Carbon Dioxide Conversion Through Tri-Reforming: Reactor/Process Design and Optimization

Tracy J Benson, Ph.D.

Dan F. Smith Department of Chemical Engineering
Lamar University, Beaumont, Texas, 77710, USA

Southeast Symposium on Contemporary Engineering Topics Jackson, MS

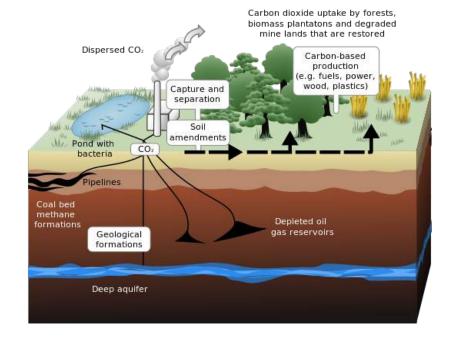
Carbon Dioxide and the Petroleum Sector

- ✓ 29 Petroleum Refineries
- ✓ 4.7 MM bbl/day crude
- ✓ 30% Total U.S. refining

www.eia.doe.gov

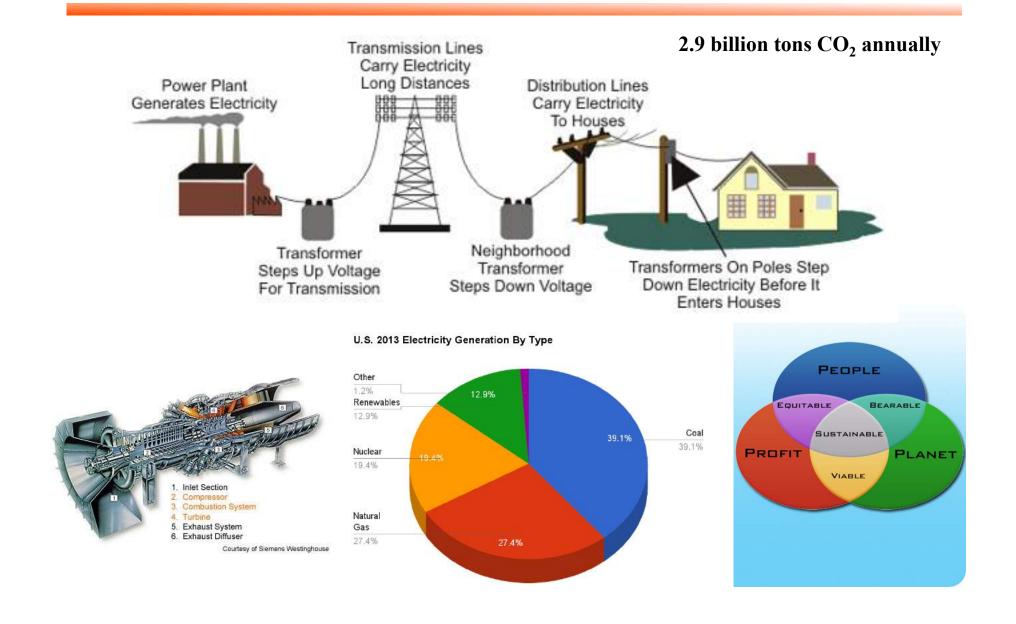
500 scf H₂/bbl crude $CH_4 + 2H_2O \rightarrow CO_2 + 4H_2$

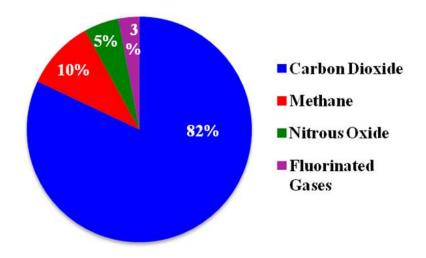
Gary, Handwerk, Kaiser (2007)



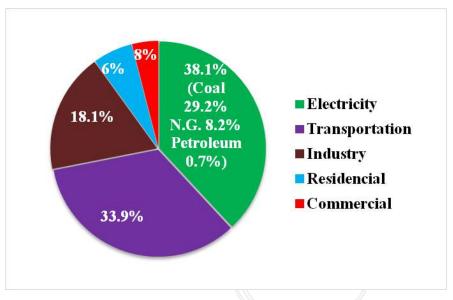
CO₂ Treatment Technologies:

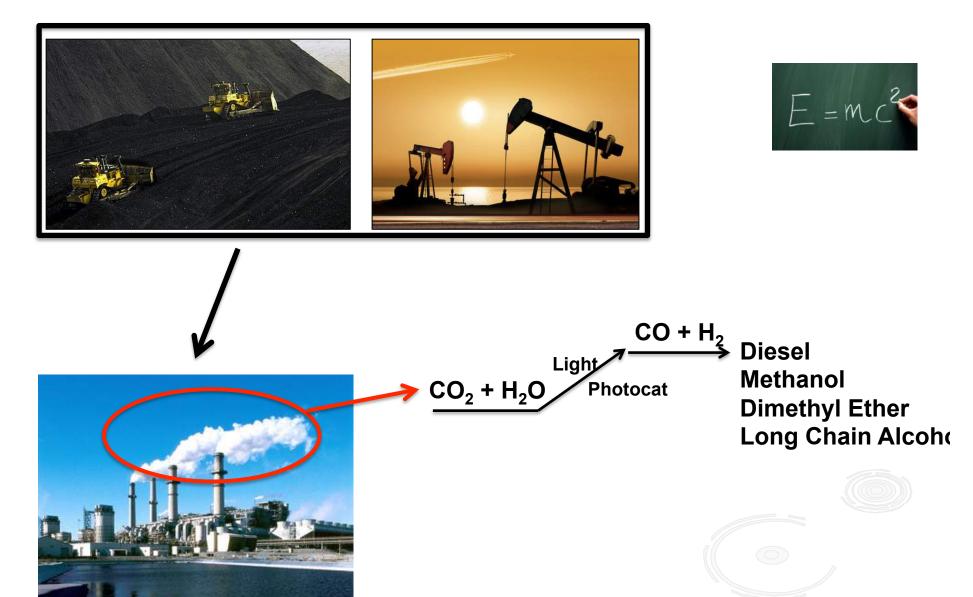
- ✓ Sequestration Technology CO₂ Capture & storage
- ✓ Conversion CO_2 to usable compounds


 $51,350 \text{ tons } CO_2/day$ (19 MM ton/yr)



Electricity in the United States


Greenhouse Gases & Their Sources

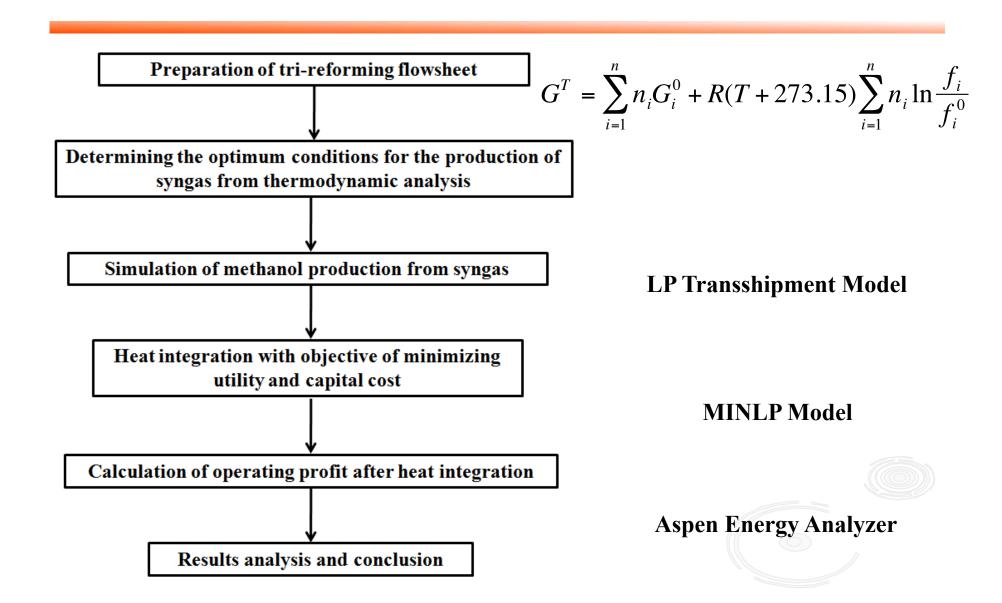

http://www.epa.gov/climatechange/emissions/co2.html

CO₂ - Birth, Death, and Reuse

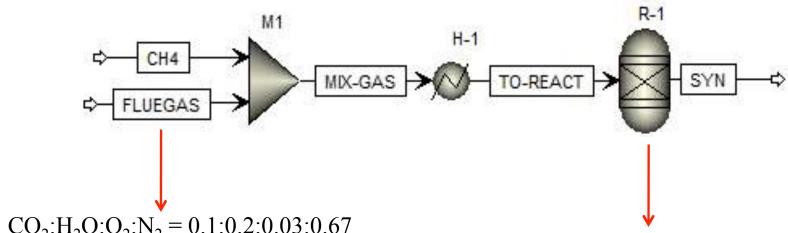
Tri-Reforming: Turning CO, into a Fuel

$$\begin{array}{lll} {\rm CH_4 + CO_2} \to 2{\rm CO} + 2{\rm H_2} & \Delta {\rm H} = +247 \; {\rm kJ/mol} \\ {\rm CH_4 + H_2O} \to {\rm CO} + 3{\rm H_2} & \Delta {\rm H} = +206 \; {\rm kJ/mol} \\ {\rm CH_4 + 1/2 \; O_2} \to {\rm CO} + 2{\rm H_2} & \Delta {\rm H} = -36 \; {\rm kJ/mol} \\ {\rm CH_4 + 2O_2} \to {\rm CO_2} + 2{\rm H_2O} & \Delta {\rm H} = -880 \; {\rm kJ/mol} \\ {\rm CH_4} \to {\rm C} + 2{\rm H_2} & \Delta {\rm H} = +75 \; {\rm kJ/mol} \\ {\rm 2CO} \to {\rm C} + {\rm CO_2} & \Delta {\rm H} = -172 \; {\rm kJ/mol} \\ {\rm C} + {\rm CO_2} \to + 2{\rm CO} & \Delta {\rm H} = +172 \; {\rm kJ/mol} \\ {\rm C} + {\rm H_2O} \to {\rm CO} + {\rm H_2} & \Delta {\rm H} = +131 \; {\rm kJ/mol} \\ {\rm C} + {\rm O_2} \to {\rm CO_2} & \Delta {\rm H} = -394 \; {\rm kJ/mol} \\ {\rm C} + {\rm O_2} \to {\rm CO_2} & \Delta {\rm H} = -394 \; {\rm kJ/mol} \\ \end{array}$$

 $\Delta H = +247 \text{ kJ/mol}$ $\Delta H = -880 \text{ kJ/mol}$ $\Delta H = + 75 \text{ kJ/mol}$ $\Lambda H = -172 \text{ kJ/mol}$ $\Delta H = +172 \text{ kJ/mol}$ $\Delta H = +131 \text{ kJ/mol}$


 $\Delta H = -394 \text{ kJ/mol}$

Conversion: >70% CO₂, 98% CH₄ $H_2/CO = 1.5 - 2.0$


- \triangleright Conversion and utilization of CO₂ without CO₂ separation from power plant
- Effective production of syngas with desired H₂/CO ratio for methanol synthesis
- > Reducing the possibility of carbon formation compared with dry reforming

Framework for Methanol Production via Tri-Reforming

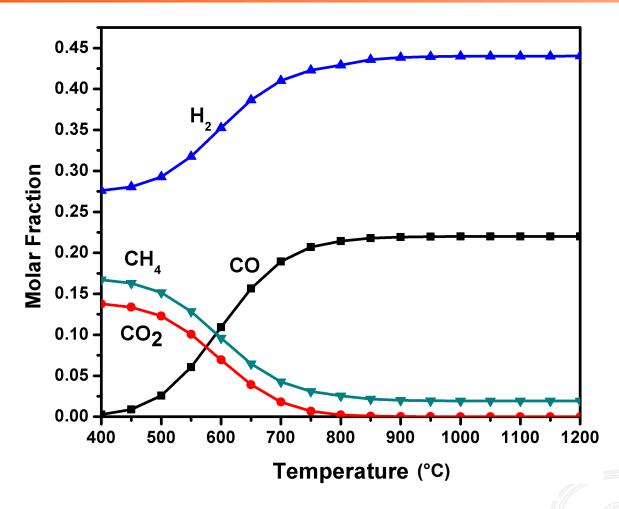
Tri-Reforming Process Flowsheet

 CO_2 : H_2O : O_2 : $N_2 = 0.1$:0.2:0.03:0.67Basis of 1,000 kmol/hr

Objective

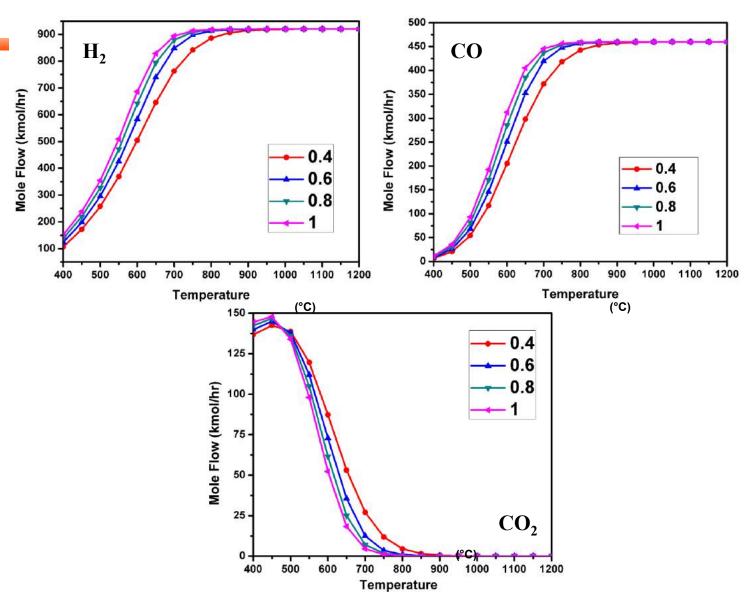
- ➤ Converting as much CO₂ as possible
- \triangleright Obtaining the ideal ratio of H₂/CO = 2.

Conditions?

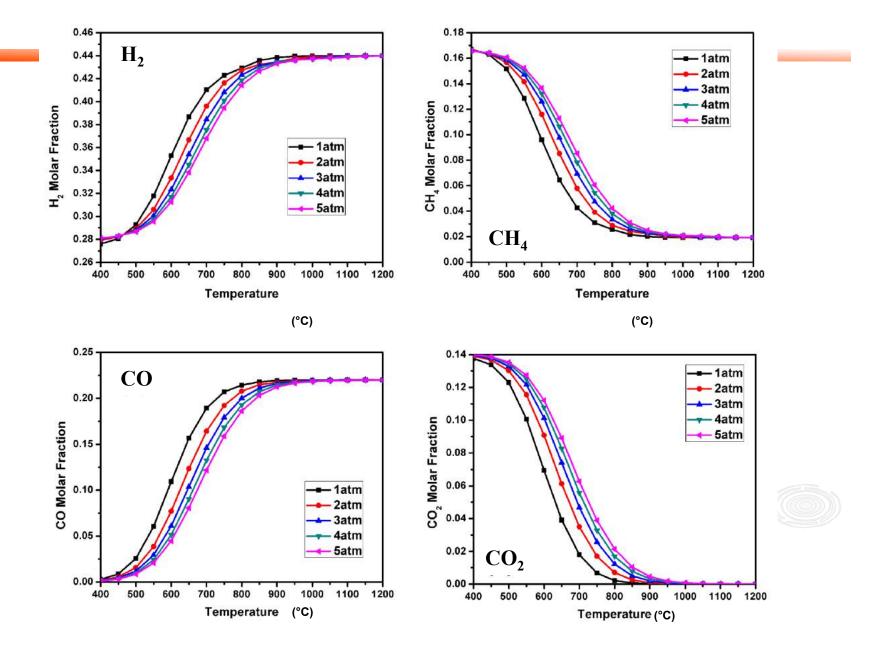

- ➤ Reaction Temperature
- > Reactor Pressure
- ➤ Ratio of CH₄/Flue gas

Tri reforming reactions

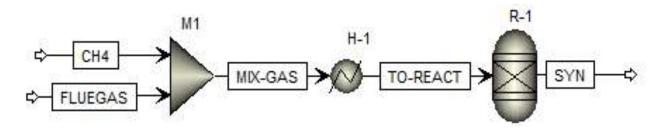
$CH_4 + CO_2 \rightarrow 2CO + 2H_2$ $CH_4 + H_2O \rightarrow CO + 3H_2$	$\Delta H = +247 \text{ kJ/mol}$ $\Delta H = +206 \text{ kJ/mol}$
$CH_4 + \frac{1}{2}O_2 \rightarrow CO + 2H_2$ $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ $CH_4 \rightarrow C + 2H_2$	$\Delta H = -36 \text{ kJ/mol}$ $\Delta H = -880 \text{ kJ/mol}$ $\Delta H = +75 \text{ kJ/mol}$
$CH_4 \nearrow C + 2H_2$ $2CO \Rightarrow C + \frac{CO_2}{}$ $C + \frac{CO_2}{} \Rightarrow + 2CO$	$\Delta H = -172 \text{ kJ/mol}$ $\Delta H = -172 \text{ kJ/mol}$ $\Delta H = +172 \text{ kJ/mol}$
$C + H_2O \rightarrow CO + H_2$ $C + O_2 \rightarrow CO_2$	$\Delta H = +131 \text{ kJ/mol}$ $\Delta H = -394 \text{ kJ/mol}$


Composition vs Temperature

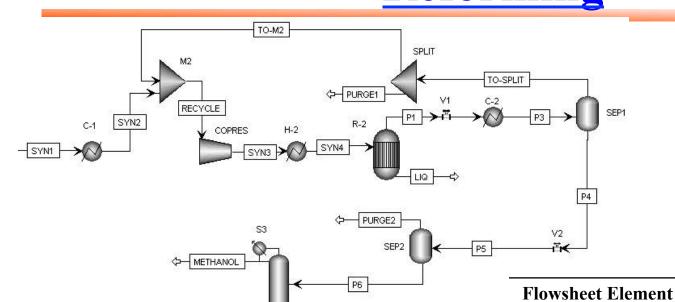
Conditions: CH₄/Flue Gas=0.4 and pressure = 1 atm.



Composition vs CH₄/Flue Gas ratio


Composition vs Pressure

Optimum Conditions

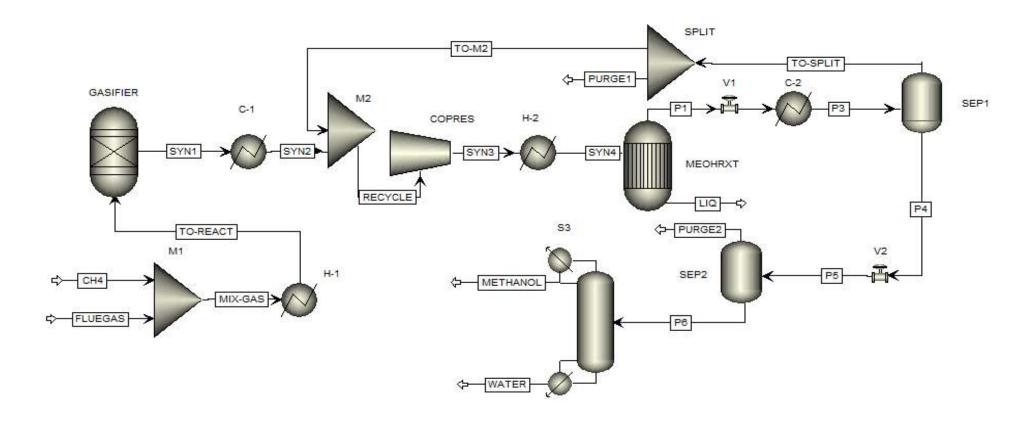

Pressure: 1 atm Temperature: 850 °C CH₄/Flue gas: 0.4

	CH ₄	FLUEGAS	MIX-GAS	TO-REACT	SYN
Temperature, °C	25	150	110	850	850
Vapor Frac	1	1	1	1	1
Mole Flow, kmol/ hr	400	1000	1400	1400	2080
Mole Frac					
$\mathrm{CH_4}$	1	0	0.29	0.29	0.02
CO_2	0	0.1	0.07	0.07	0
CO	0	0	0	0	0.22
H_2	0	0	0	0	0.44

Combined Methanol Synthesis and Tri-Reforming

R-equil Reactor

Parameter


Peng – Robinson EOS

Value

CO + 2H ₂ → CH ₃ OH	$\Delta H = -91 \text{ kJ/mol}$
$CO_2 + 3H_3 \rightarrow CH_3OH + H_2O$	$\Delta H = -50 \text{ kJ/mol}$
$CO + 2H_2O \rightarrow CO_2 + H_2$	$\Delta H = -41 \text{ kJ/mol}$

↓ WATER

methanol reactor	temperature (°C)	220
	pressure (bar)	50
sep1	temperature (°C)	25
	pressure (bar)	24
sep2	temperature (°C)	25
	pressure (bar)	10
S3 (Radfrac)	Number of stages	19
	Feed stage	11
	Reflux ratio	1.5
	Distillate to feed	0.988
	ratio	U.988

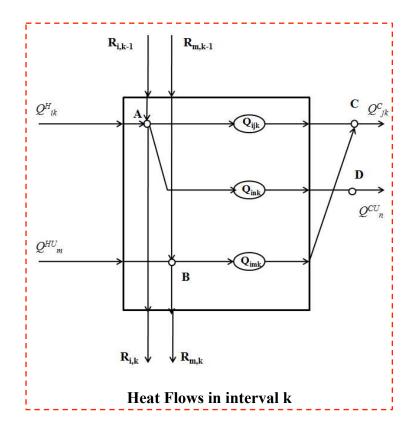
Variables for heat and cold streams

Blocks	Stream	Tin(°C)	Tout(°C)	Fcp(kW/°C)
H-1	C1	110	850	16
H-2	C2	125	220	154
Reboiler	C3	137	139	4806
C-1	H1	850	60	18
C-2	H2	219	25	170
Conderser	Н3	135	96	249

Variables for utilities selected in heat integration

Utility	Temperature(°C)	Cost (\$/kW-yr)
Cooling water	20	6.7
Refrigerant 1	-25	86.3
Fired heat	1000	134

Heat Integration strategies

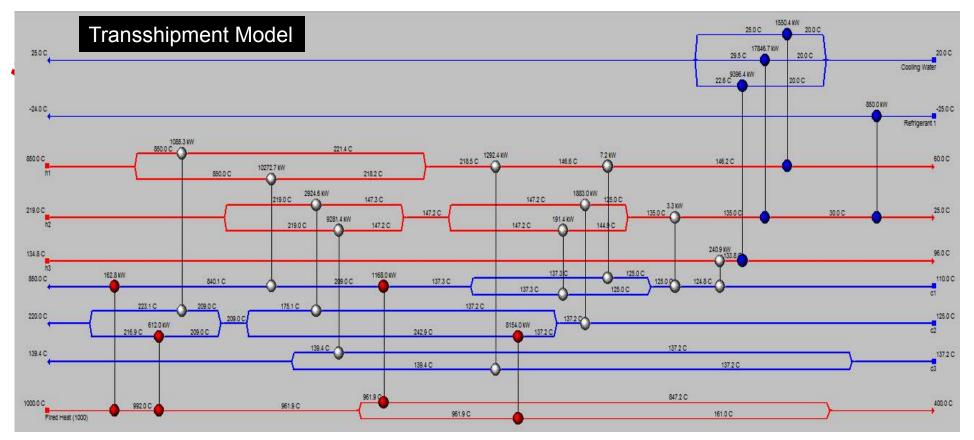

- 1. Minimizing Utility Cost
- 2. Minimizing Capital Cost

Transshipment model (Utility Cost)

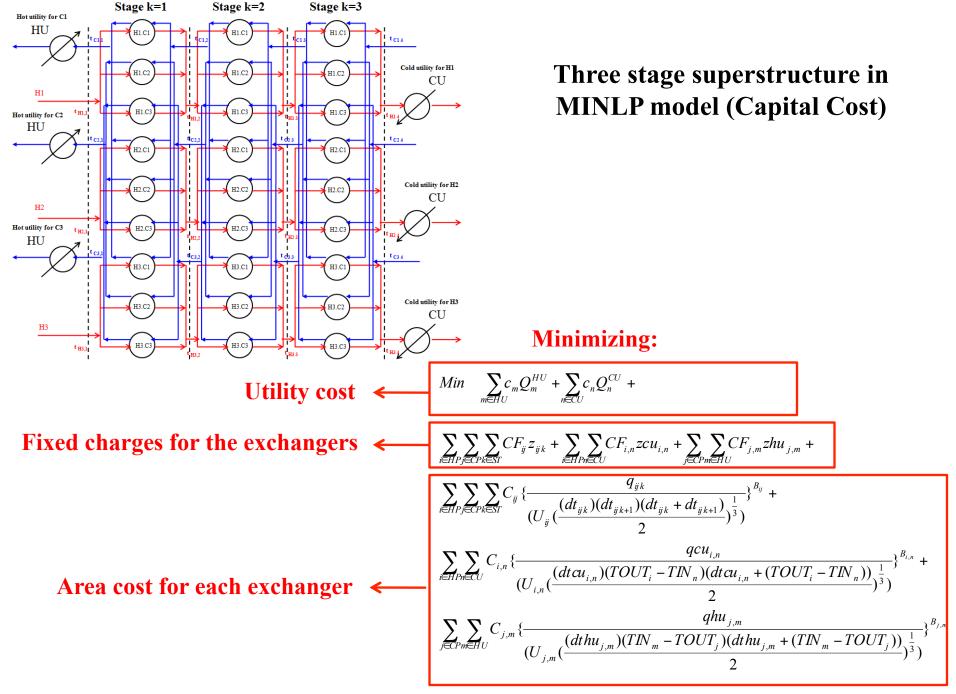
Objective Function:

$$min \sum_{m \in S} c_m Q_m^S + \sum_{n \in W} c_n Q_n^W$$

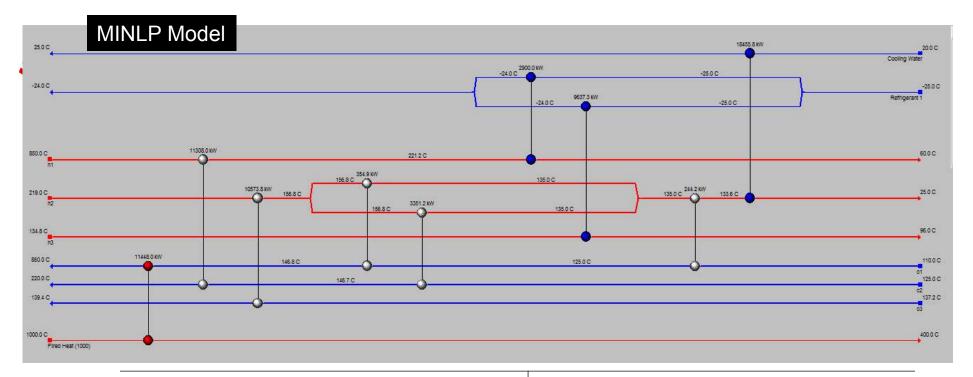
Equations:


$$\begin{split} R_{ik} - R_{i,k-1} + \sum_{j \in C_k} Q_{ijk} + \sum_{n \in W_k} Q_{ink} &= Q_{ik}^H \\ R_{mk} - R_{m,k-1} + \sum_{j \in C_k} Q_{mjk} &= Q_m^S \\ \sum_{j \in H_k} Q_{ijk} + \sum_{m \in S_k} Q_{mjk} &= Q_{jk}^C \\ \sum_{i \in H_k} Q_{ink} &= Q_n^W \end{split}$$

Boundary conditions:


$$R_{i0} = R_{iK} = 0$$

Constraints:


$$R_{ik}, R_{mk}, Q_{ijk}, Q_{mjk}, Q_{ink}, Q_m^S, Q_n^W \ge 0$$

Energy usage before heat integration		C 3	Energy usage after heat integration	
streams	Amount (kW)	streams	Amount (kW)	
C1	12047	C1	1331	
C2	14660	C2	8766	
C3	10574	C3	0	
H1	14208	H1	1550	
H2	32975	H2	18697	
H3	9637	Н3	9396	
% energy savings			57.8	

Yee, T.F. and I.E. Grossmann, Comput. Chem. Eng. 1990;14:1165-1184

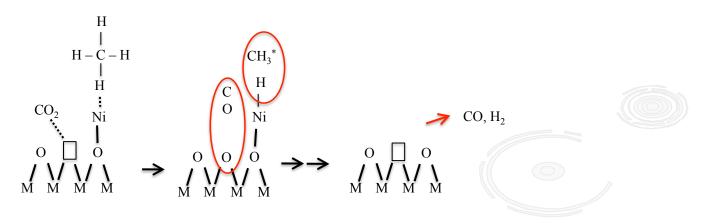
Energy usage before heat integration		Energy usage	after heat integration
streams	Amount (kW)	streams	Amount (kW)
C1	12047	C1	11448
C2	14660	C2	0
C3	10574	C3	0
H1	14208	H1	2911
H2	32975	H2	18455
Н3	9637	Н3	9637
% energy savings			54.9

Comparison of energy consumption before and after heat integration for the whole process

Enougy uses a bef	lava haat intagratia		Energy usage after heat integration	
Energy usage bei	ore heat integratio	Π 	Minimizing utility cost	Minimizing capital cost
Block	Туре	Amount (kWh)	Amount (kWh)	Amount (kWh)
GASIFIER	Reactor	19061	19061	19061
MEOHRXT	Reactor	10762	10762	10762
C-1	Cooler	14209	1550	2912
C-2	Cooler	32975	18697	18456
H-1	Heater	12047	1331	11448
H-2	Heater	14659	8766	0
SEP1	Flash	0	0	0
SEP2	Flash	0	0	0
COMP	Compressor	14255	14255	14255
CONDENSER	RADFRAC	9637	9396	9637
REBOILER	RADFRAC	10574	0	0
Total utili	ty	127605	83818	86531
Energy per kg	g CO ₂	29	19	19.7
% Energy say	vings		34.3	32.2

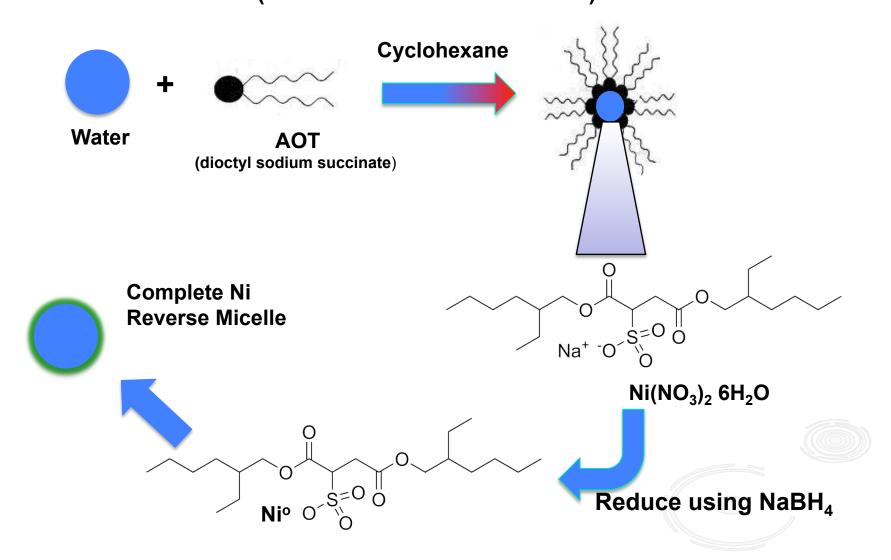
Economic Analysis

- ➤ Operating hours 8,000 hr/year
- ➤ Flue gas was not considered into the overall costs calculation as it is a waste stream
- ➤ Catalyst in the reactions are not considered
- > Due to the lack of info for fixed capital cost, depreciation, taxes, operating profit was defined as follows:


Comparison between steam CO₂ reforming and tri-reforming

CO ₂ treatment method	Methanol production (kg/kg CO ₂)	Energy consumption (kWh/kg CO ₂)
Steam - CO ₂ reforming	1.31	11.5
Tri-reforming	2.75	19.0

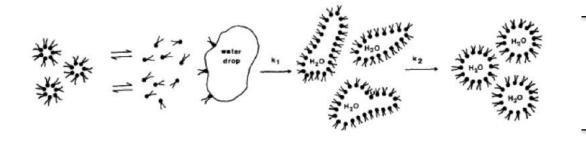
Developing Nanoparticle Catalyst


- ✓ Synergism between active metal and support
 - > Oxygen vacancies within support
 - Adsorption of hydrogen by active metal
- **✓** Reverse Micelles for nanoparticle formation
 - > Increased active sites per unit mass
 - ➤ Intimate contact between reacting species

Nanoparticle Catalyst Concept

Reverse Micelles (water in oil micro-emulsions)

Nickel Nanoparticle Catalysts

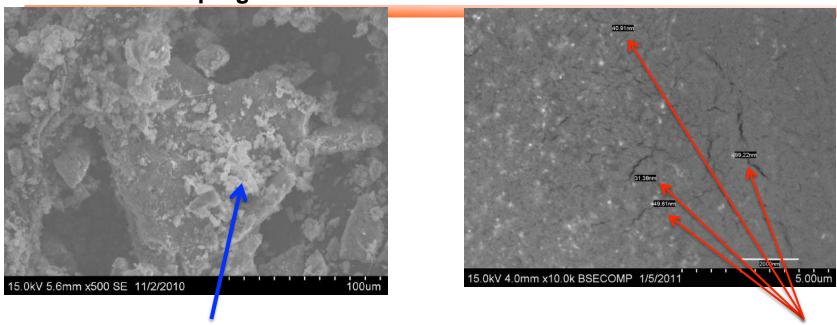

From Reverse Micelles to Nanoparticle Catalysts

Triple Solvent washing

+

Calcine (650°C)

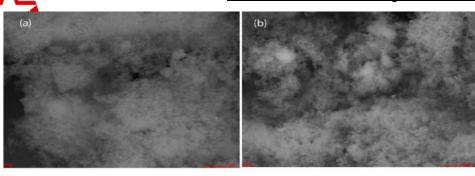
Factors Affecting RM'S

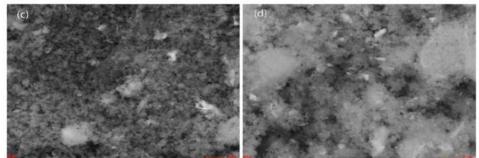

- > Water Pool Size
- > Surfactant Ligand Size
- > Sonication
- > Solvents

SEM Ni-TiO₂ Support

Wet Impregnation

Reverse Micelle


Micron sized Ni particles


- 30 50 nm sized Ni particle
- ❖ Nickel nitrate solution, drying, calcination (650°C)
- Narrow particle size range in RM system
- ❖ Inconsistent surface converages for Ni (5% ≠ 5%)

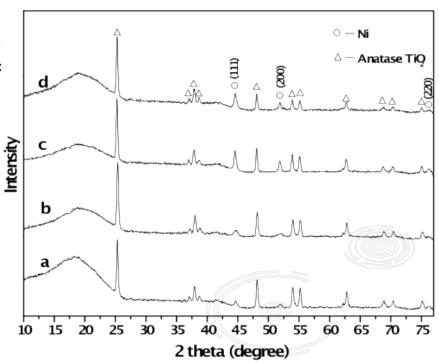
$$2Cu_2 + + 4BH^- + 12H_2O \rightarrow 2 Cu + 14H_2O + B(OH)_3$$

 $2Ni_2 + + 4BH^- + 12H_2O \rightarrow 2 Ni + 14H_2O + B(OH)_3$

Standard Reduction Potential

Preliminary Results (Ni/TiO2)

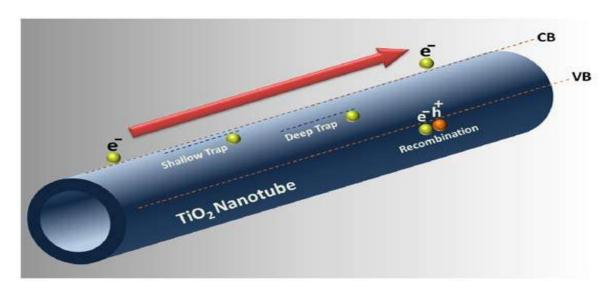
SEM micrograph of (a)5%, (b)10%, (c)15% and (d) 20% Ni/TiO $_2$ (scale: $2\mu m)$

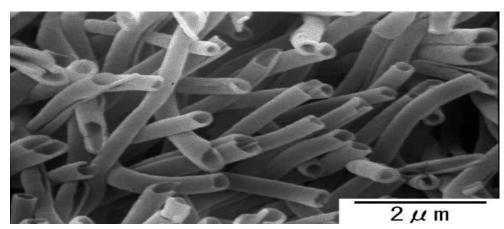

Ni Particle Sizes, nm

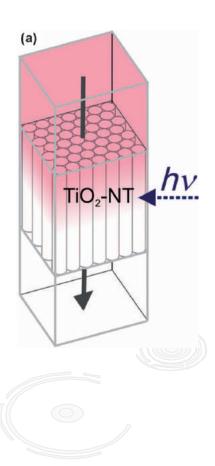
111	200	220
16.94	19.17	24.75
11.25		17.32
23.16	19.17	19.91
18.66	21.64	24.75

AVG	17.50	19.99	21.68
St Dev	4.92	1.43	3.70

Ni Content (SEM-EDX)

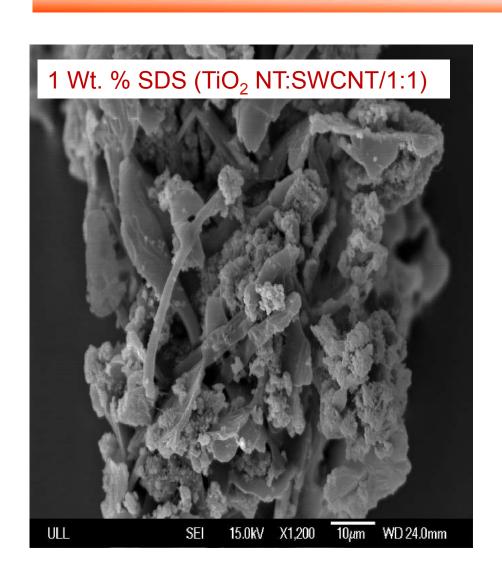

- (a) 5% (7%)
- (b) 10% (11%)
- (c) 15% (13%)
- (d) 20% (21%)

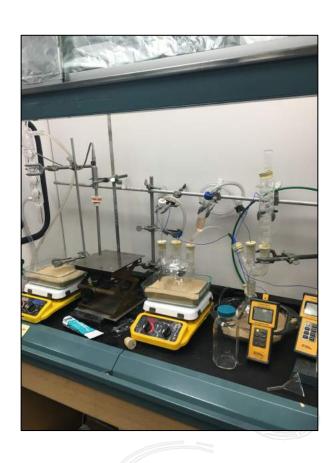


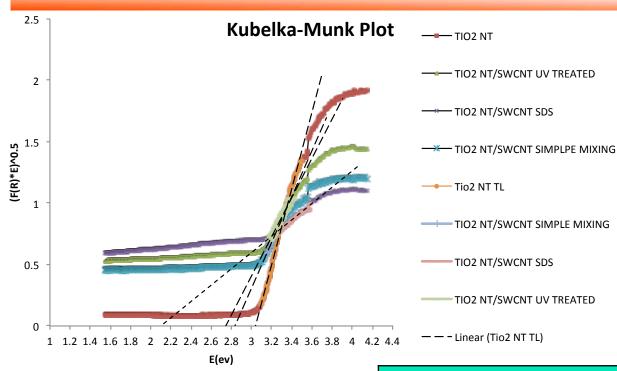


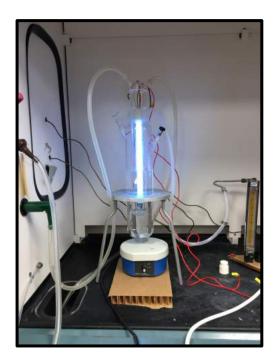
Photocatalyst Theory

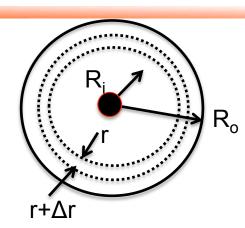
Carbon Nanotubes on Titanium Nanotubes






Photocatalyst Development


Band Gap Determination



Material	Band Gap Energy, eV
TiO ₂ -NT	3.1
TiO ₂ -NT/SWCNT (simple mix)	2.85
TiO ₂ -NT/SWCNT (uv treated)	2.75
TiO ₂ -NT/SWCNT (SDS)	2.1

Moving Forward – Photocatalytic Reactions

- **♦** CO₂ Conversion (competing rxn)
- **♦** Photon Flux
- **◆** Carbon Balance
- **♦** Energy Required/mole CO₂

Photon Balance: In - Out - absorbed = 0

E = Photon Flux

A = **Absorbance** property of fluid + catalyst

 $2\Pi h[(Er)_r - (Er)_{r+\Delta r}] - 2\Pi hrEA_{\Delta r} = 0$

Key Closing Thoughts

- ➤ Process modeling (equilibrium)
 - \triangleright Optimum T = 850°C
 - ➤ Optimum CH₄/Flue Gas is 0.4
- \triangleright CO₂ conv 99% and H₂/CO = 2
- ➤ Catalyst optimization and kinetic evaluation
- > Sustainable Carbon Management Strategies

ACKNOWLEDGEMENTS

- > Texas Air Research Center
- > Center for Advances in Air & Water Quality

Collaborators:

Dr. Paul Bernazzani

Dr. Cristian Bahrim

Dr. Thomas Pesacreta

Dr. Clayton Jeffryes

Dr. Yishan Zhang

Students:

Karishma Piler (PhD)

Erfan Raihan (PhD)

Ashik Mahmud (MS)

Jennifer Watters (UG)

THANK YOU

Lamar University
Beaumont, TX